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ABSTRACT

We argue that the current practice of using integer positions
for pointing events artificially constrains human precision ca-
pabilities. The high sensitivity of current input devices can be
harnessed to enable precise direct manipulation “in between”
pixels, called subpixel interaction. We provide detailed anal-
ysis of subpixel theory and implementation, including the
critical component of revised control-display gain transfer
functions. A prototype implementation is described with
several illustrative examples. Guidelines for subpixel do-
main applicability are provided and an overview of required
changes to operating systems and graphical user interface
frameworks are discussed.

ACM Classification: H.5.2 [Information interfaces and
presentation]: User interfaces - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Display density; indirect pointing; input device
sensitivity; device’s human resolution; subpixel interaction;
direct manipulation

INTRODUCTION

Over the last thirty years, there have been tremendous in-
creases in computer processing power, storage capacity, and
network bandwidth. Graphical user interfaces (GUIs) have
played a crucial part in making these resources available, en-
abling the direct manipulation of data, which has also in-
creased substantially in diversity and size. However, while
processing, storage, and communication capabilities have ex-
perienced a hundred, thousand, or million-fold increase to
handle these increased data manipulation requirements, the
situation is quite different for computer displays. Most mod-
ern displays typically have a pixel density lower than 150 PPI
(pixels per inch) and cannot display more than 2.5 megapix-
els'. Display capabilities have increased by only a factor of
21 compared to the original Macintosh.

Isee http://libpointing.org/resolution/ for information on the
sensitivity and pixel density of commercial mice and displays
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When data density exceeds display density, direct manipu-
lation becomes a problem. For example, selecting an item
from an overview of a large discrete set, or fine adjustment
of a continuous variable. Solutions usually involve a scale
adjustment in visual space or layering transfer functions to
reach the desired control precision. But these approaches
take for granted the curious way in which operating systems
map input device movements to data.

When you move a pointing device, motion deltas (in device-
specific units) are sent to the I/O subsystem and transformed
by a transfer function [5] into on-screen pointer motions (in
pixels). The system then moves the pointer accordingly and
generates movement events which are routed via the win-
dow subsystem and GUI framework to a widget to manip-
ulate data (Figure la). What is curious is that although
these are commonly called “mouse events,” they are actu-
ally “pointer events” because the information they carry de-
scribe on-screen pointer movements, not mouse movements.
So, a pointing device is not really how we interact with data:
it is a device through which we interact with an on-screen
pointer, through which we interact with data. Thirty years
ago, mouse sensitivity and display density were comparable,
so this kind of input mapping seemed reasonable. The orig-
inal Macintosh mouse was 90 CPI (counts per inch), quite
close to its ~72 PPI display density. The problem is that this
mapping still serves as the basis for all graphical interactions,
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Figure 1: Input mappings: (a) currently, human movements are

discretized by mouse sensitivity, then again by display density:

data points “in between” pixels like ‘C’ are unreachable; (b) a

subpixel mapping discretizes human movements by mouse sen-

sitivity only, for precise data manipulation.
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and since movements are measured in pixels, they are only
as accurate as the display density.

Fifteen years ago, in his classic paper “The Eyes Have It (...)”
[12], Shneiderman pointed out how our remarkable percep-
tual abilities were often underutilized. From what we just
described, it is fair to say that our remarkable motor abili-
ties are currently underutilized. To put it simply, the eyes
could surely use a hand. The sensitivity of modern mice is
now typically over 800 CPI and can reach more than 10000
CPI, and some touchpads are 1000 CPI — levels of precision
more suitable for capturing high human sensitivity [4]. It is
time the current input mapping is revised.

We are proposing subpixel interaction, a subtle, but critical
alteration to current system architectures where device move-
ments are mapped directly to data, enabling interaction “in
between pixels” (Figure 1b). Our solution requires a small
software-level modification, yet increases the accuracy of
standard interaction techniques and remains compatible with
complimentary approaches like Focus+Context lenses. After
describing motivating situations where pixel-precision is in-
adequate and reviewing related work, we describe the details
of our solution. Specifically, guidelines for useful subpixel
resolution and, since our focus is on indirect pointing devices
like mice and touchpads, we describe revised transfer func-
tion characteristics which leverage subpixel capability. Our
work is a rallying cry with implementation details to leverage
human input capability for precise direct manipulation.

WHY PIXELS ARE NOT ENOUGH

To illustrate the current problem more concretely, consider
navigating a video player where frame selection accuracy is
ultimately limited by the pixel width of the display. For ex-
ample, the Apple OS X QuickTime player has a fixed time-
line slider width of 315 pixels (Figure 2a). Moving the slider
1 pixel skips a 5 minute video by 1 second, but a 1.5 hour
movie is skipped by 17 seconds (Table 1). This may be fine
for coarse positioning, but tasks like skipping only commer-
cials becomes tedious or impossible as the video length in-
creases. Even more extreme is accurately selecting specific
frames with Apple Keynote’s video inspector which uses a
198 pixel, fixed width slider.

There are a myriad of other examples where there are not
enough pixels to provide the required precision: picking a
particular item in a large list using a slider; image naviga-
tion and editing (e.g. accurately cropping a megapixel im-
age, picking a precise location on a map); resizing a calendar

Duration Keynote QT Player
CHI video 05:00 00:01.515 00:00.952
TV Show 52:00 00:15.758 00:09.905
Movie 1:30:00 00:27.273 00:17.143
Gone with the Wind ~ 3:58:00 01:12.121 00:45.333
Bergensbanen 7:14:13 02:11.581 01:22.708

Table 1: Time between pixels in the Keynote inspector and
QuickTime Player sliders for different video durations.

event to minute precision (e.g. when booking flight depar-
tures or lawyers tracking billing time); high precision vector
drawing tasks (e.g. drawing a structural wall to centimeter
precision or aligning objects in vertex-dense areas); or ma-
nipulating objects in 3D applications (e.g. setting orientation
of CAD objects to within 0.1°).

A solution to these pixel precision problems could be to sim-
ply add more pixels. Returning to the video player example,
consider enabling a more reasonable 1 second selection ac-
curacy with a 1.5 hour video by increasing the timeline slider
width. Unfortunately, the slider would need to be 5400 pixels
wide, the width of three 1080p HDTVs. This is clearly un-
workable, so a common way to overcome the limitation is to
introduce alternate navigation controls such as arrow keys,
but these can be slow and error prone, partly because they
no longer follow principles of direct manipulation. Next, we
discuss how researchers have approached the pixel precision
problem while trying to maintain the benefits of direct ma-
nipulation.

RELATED WORK

To make direct manipulation more accurate, previous work
introduces explicit precise pointing modes such as discrete
or continuous zooming and Focus + Context Lenses. In ad-
dition to problems inherent with modes, these techniques are
impeded by the assumption that whole-pixel input resolution
is a hard constraint — they ignore the high resolution capabil-
ities of modern pointing devices and human limb accuracy.

Increasing Pointing Accuracy with Modes

A straightforward way to increase input accuracy is to zoom
and magnify the desired target area to make pointing eas-
ier. For example, the OS X QuickTime Player 10.1 has
what is essentially a dwell-while-dragging zoom mode to se-
lect video frames more precisely (Figure 2a). Other exam-
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Figure 2: Manipulating visual space to increase pointing accu-
racy: (a) dwelling while dragging the OS X QuickTime Player
10.1 timeline slider zooms the timeline in to provide 1 second
precision in a 10 second window; (b) some YouTube videos have
a Focus+Context timeline with a secondary slider providing 1
second precision.
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ples include Popup Vernier [3] which supports explicit in-
cremental cursor space magnification during drag operations,
and Ramos and Balakrishnan’s Zliding technique [10] which
continuously maps pen tip pressure to view scale. These ex-
amples are part of the more general class of zoomable user
interfaces (ZUIs) [8] where the zoom level is adjusted us-
ing an explicit control like dwell, pressure, keyboard keys,
mouse scroll wheel, or GUI buttons, sliders, or textfields.
However, zooming requires an explicit cognitive decision,
locating the optimal zoom level to facilitate precise pointing
can be time consuming and difficult, and the overall context
of the information space is lost while zoomed in.

To maintain context, Focus+Context Lenses embed a mag-
nified portion of the information space in the overview
view [9]. Although this addresses some shortcomings of
ZUIs, Appert et al. [2] argue that when the input device
is used to simultaneously move the lens and point at tar-
gets in the lens, there is a quantization problem limiting
the usable range of lens magnification levels. Their solu-
tion is also to introduce an explicit mode switch, this time
to switch between positioning the lens and pointing at tar-
gets inside the lens. Techniques like Alphaslider [1] and
YouTube’s secondary magnified timeline slider (Figure 2b)
are one-dimensional examples of the Focus+Context strat-
egy. Since they are one-dimensional, the switch to the accu-
rate mode is achieved spatially, by acquiring the magnified
slider.

Another solution is to switch to a mode with a custom pre-
cise pointing transfer function. This can be achieved with a
technique called pointer lock where “input methods of appli-
cations [are] based on the movement of the mouse, not just
the absolute position of a cursor” [11]. This is often used
for first-person navigation in games, but can also be used for
modal precise control of parameters like object rotation in 3D
applications. Since direct manipulation no longer follows the
system pointer, the pointer is usually hidden or “locked” in
place to reduce user confusion.

Unfortunately, using pointer lock to enable a modeless sub-
pixel solution is not practical. For the second transfer func-
tion to increase accuracy, it must scale down the relatively
large integral movement deltas received from the system
event (Figure 3). This will increase motor space which low-
ers comfort and performance due to device clutching. In

System Custom
transfer transfer
function function
gain gain<i
speed speed
dx,dy—» dx,dy—»
Input On-screen Modified
device pointer pointer
[400, 10000] CPI <150 PPI ???

Figure 3: Using pointer lock for subpixel interaction amounts to
layering a second precise transfer function in which low speeds
are constrained by integral movement deltas.

addition, since precise pointing is necessarily mapped to
low speeds which have a lower-bound constrained by inte-
gral deltas, then larger ‘normal’ pointing movements will be
harder to control since the speed-to-position mapping is con-
densed. Finally, since the precise transfer function is layered,
it is has to compensate for different hardware, software, and
user settings which determine the underlying system transfer
function [5]. Like the other techniques above, using pointer
lock does not harness the potential precision of modern input
devices.

Lost Capabilities of Input Devices and Human limbs
Traditional GUI toolkits like Java Swing report pointer
movement events as integers. Even toolkits like Qt or WPF
which are designed for display resolution independence? re-
port motion events as integers, regardless whether they are
specified as floating point (with WPF, this is due to inte-
gral WM_MOUSEMOVE messages). On OS X, position events
are floating point, but these only hold non-integral values
with absolute pointing devices such as tablets. For relative
devices, Casiez and Roussel [5] show that pointing transfer
functions used by Microsoft Windows, OS X, and X.Org ap-
ply a speed-dependent float factor on motion deltas but move
the pointer according to the sole integral part of the result.
Although the fractional part is preserved internally for later
accumulation, it is inaccessible from high-level software.

Raw motion deltas can usually be obtained (e.g. through
WM_INPUT messages) and are commonly used by games
for custom high-sensitivity pointer control. But until re-
cently [5], the lack of appropriate knowledge and tools made
it quite difficult for this custom pointer to behave like the
system one for “normal” pointing tasks. The idea of using
floating coordinates to improve the precision of the system
pointer with relative devices was once suggested within the
X.Org community?, but received very little attention.

The sensitivity of modern pointing devices ranges from 400
up to 10000 CPI or more for high-end mice, enabling min-
imal measurable displacements of 0.0635 mm and 0.00254
mm respectively. Whether people can leverage this level of
precision depends on their ability to control fine movements
of input devices in motor space. In a multi-scale pointing
experiment, Guiard et al. [7] found that users can comfort-
ably acquire 0.06 mm targets in motor space (423 CPI), but
this is not an upper bound since it was the smallest width
they evaluated. More recently, Bérard et al. [4] defined a De-
vice’s Human Resolution (DHR) as “the smallest target size
that users can acquire with an ordinary amount of effort us-
ing a particular device”. They found that the DHR depends
on the input device and the user’s sensorimotor capabilities.
For computer mice they found DHR values from 700 CPI
to 1400 CPI. This means that humans can easily exploit in-
put resolutions up to 7 to 14 times higher than a typical 100
PPI display. The challenge is how to translate these human
capabilities into effective control of direct manipulation in-
terfaces.

2i.e. where graphical objects are positioned using floating point coordinates
in a space independent of the screen
*http://johan.kiviniemi.name/blag/

making-x-report-the-mouse-position-with-subpixel-precision/
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LEVERAGING INPUT ACCURACY

Direct manipulation interfaces translate objects of inter-
est into physically manipulatable, graphical representations.
Each object is composed of a collection of underlying data,
often referred to as a model. Models can represent discrete
elements (e.g. integers, video frames) and continuous ele-
ments (e.g. floating values). The range of elements may be
bounded (e.g. choosing a video frame from a clip) or un-
bounded (e.g. specifying a CAD object’s length). In prac-
tice, unbounded models can be considered bounded given
reasonable minimum and maximum values for the task, and
continuous models may be considered discrete given a rea-
sonable level of precision for the task. By treating all models
as discrete, we can define the model’s cardinality (N) as the
number of elements which users expect to select from.

When display density prevents the object from being repre-
sented at the desired granularity (i.e. with the right level of
detail), auxiliary representations are needed such as text la-
bels, zoomed views, or even sounds or haptic effects. This
solves the output granularity problem, but the problem re-
mains for input. This is what motivates us: we want to over-
come the problem of input granularity being limited by dis-
play density; we want to support physical actions on objects
with a higher precision than the display. As discussed earlier,
there is a hidden potential in input devices that is compatible
with the degree of control that people can exert. We would
like to take advantage of this potential in a way that smoothly
integrates with current practices.

In this section we develop a way to provide subpixel in-
put while maintaining current graphical object representa-
tions and without introducing any explicit “high precision”
mode. We preserve the on-screen pointer since it provides
essential visual feedback for direct manipulation. We alter
the mapping between movements in motor space and visual
space, but we do this without changing the current “feeling”
of pointing: we avoid situations where the cursor feels stuck
and then suddenly moves quickly, and we do not extend the
device operating space. People continue to interact as they
do now, but with higher, subpixel precision when needed.

Taking the input device into account

To leverage input accuracy, the system first needs to know
the device sensitivity, expressed in device-independent units
(such as CPI). This is important so that the system under-
stands what it measures: a higher sensitivity should result
in a more precise movement, not a change of magnitude.
Unfortunately devices and hardware drivers typically do not
provide this information (and probably for that reason, the
Windows and X.Org pointing transfer functions completely
ignore it [5]).

As already explained, pointing transfer functions apply a dy-
namic gain factor on device displacements, move the pointer
according to the integral part of the result, and store the frac-
tional part internally. We want that information all the way
up: the fractional part should be accessible in an easy way
to the code actually responsible for the interaction. We pro-
pose to generalize what some systems do for absolute de-
vices: expose the fractional part by using floating values for
the pointer coordinates. To summarize, we propose first that

transfer functions should take into account device sensitivity;
and second, that float values resulting from these computa-
tions should be forwarded as is to higher-level code.

This solution takes the sensitivity of the input device into ac-
count so that movements in motor space are no longer mag-
nified by input sensitivity or constrained by display density.
In theory, granularity of control can be increased 100 times
for a high end 10000 CPI mouse (assuming a display density
of 100 PPI). However, standard transfer functions must be
adapted to unlock this potential, and this adaptation must be
done carefully to maintain normal cursor behavior.

Taking the user into account

Having a device with a high sensitivity does not necessarily
mean one can fully take advantage of it: users’ capabilities
and limitations should also be taken into account. As noted
above, Bérard et al. found the Device’s Human Resolution
(REShyman) for mice to be in the range of 700 - 1400 CPI [4].
Devices with a sensitivity (RESj;pur) below RESpuman are not
accurate enough to capture fine movements in motor space.
But at the same time, users are not likely to benefit from
higher sensitivities. We can thus define the useful resolution
(RES ygefu1, in CPI) of a device and epsilon (€, in inches), the
smallest measurable displacement one can produce with it:

RESsefqt = min (RESinputaREShuman) (D
1
= — (2)
RESuseful

Considering the current unitless gain applied by the pointing
transfer function (G), we can calculate the number of practi-
cable subpixels (S) as:

S — 1 « RESuseful
RES screen G

3)

where REScrcen denotes the pixel density of the display (in
PPI). S is actually the number of epsilons required to move
from one pixel to another. Note that S necessarily varies over
time since G is dynamic (speed-dependent, based on user
movements). Note also that the highest S value Spax cor-
responds to the lowest gain level Gpp.

Adapting the transfer function

Modern pointing transfer functions are discrete, speed-
dependent, and were generally designed for a 400 CPI mouse
sampled at 125 Hz and a 96 PPI display refreshed at 60
Hz [5]. They typically produce gain values between 0.8 and
4.1 for motor speeds under 2.5 cm.s~! and then smoothly
transition from these values to high ones at high speeds. Fig-
ure 4 shows a sample sigmoid function producing gain val-
ues in the same range for a particular hardware configuration.
Assuming RESp,man = 1000 CPI and applying Equation 3 to
Gmin = 1.0, this function would provide access to Spax = 11
subpixels. But what if this was not enough?
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Figure 4: Sample sigmoid transfer function. The plot was made
considering a 4000 CPI mouse sampled at 500 Hz and a 90 PPI
display refreshed at 60 Hz. Green crosses indicate the 22 gain
levels that generate subpixel motion.

We can determine the optimal gain Ggp which provides
enough subpixels to select among all model elements with
cardinality N given P pixels of screen space:

P RESuseful
Gopt = X 4
P RESqereen N @

From this equation, it can be seen that when P < N (i.e.
Gopt < RESyseful / RESgcreen) subpixels are beneficial. For
example, using the video durations in Table 1 with RES gy
= 1000 CPI and RESgcreen = 90 PPI, a one second accuracy
in the QuickTime Player corresponds to a Gop of 1.121 for
the TV show, 0.648 for the generic movie, 0.245 for Gone
with the Wind, and 0.134 for Bergensbanen. If we compare
these numbers to the gain values in Figure 4, we see that
the function should work for the TV show as-is (the corre-
sponding Gy is higher than Gpy), but not the other videos.
Achieving frame accuracy is even more challenging. Assum-
ing a frame rate of 30 fps, Gop values are much lower (0.037,
0.022, 0.008, and 0.004). In order to approach these optimum
gain levels, we need a strategy for function adaptation.

To maintain normal pointer behavior, we alter an existing
transfer function so that it produces Gop at low speeds.
Specifically, we calculate V,i,, the minimum speed in
meters-per-second on which the transfer function operates,
and Vi, the speed associated with RES gefy1:

0.0254
Vmin = —==— XFREQj; 5
min RESinput X Qmput ( )
0.0254
|4 = ———— xFREQ; 6
use RES yerur X Qinput (6)

where FREQ;, is the frequency of the pointing device.
Since there is no guarantee that people can actually move the
device at such a slow speed like Viin, we maintain the Gop
value for all speeds under at least Vjse. To maintain normal
pointer behavior, we smoothly transition between this point
(Vuse, Gopt) and the point where the function starts producing
motions of 1 pixel or more (Vpix, Gpix). Note that like Gin

A
+
Gpix T +
+
-4
- o
o
Gmin -+~ +
Gopt 4
Vmin Vuse Vpix

motor speed (m.s™)

Figure 5: Closeup of the low-speed domain of a transfer func-
tion adapted to a particular model. Green and blue crosses show
the original gains (subpixel & pixel). Yellow crosses show a pos-
sible adaptation.

and unlike Vi and Ve, the values of Vjix and Gpix depend
on the function definition.

Figure 5 shows a closeup of the low-speed domain for a hy-
pothetical transfer function that one might want to adapt.
The blue crosses show the points of the original function
that produce pixel motions, the green ones subpixel mo-
tions. The yellow crosses illustrate a possible interpolation
between (Vyse, Gopt) and (Vpix, Gpix). The distance between
Vuse and V,ix, the one between Gy and Gpix, and FREQjput
constrain the interpolation. One needs enough speed steps
(nsteps» Equation 7) to keep a reasonable distance between
interpolated gain levels to reduce the risk of overshooting.
At the same time, one does not want to alter the gain val-
ues corresponding to pixel motions since this would result
in a possibly perceivable modification of the pointer behav-
ior. Note that in a worse-case scenario, there may be no sub-
pixel speed/gain combination (i.e. green cross) in the original
function.

Vpix — Vuse

Vrnin (7)

Nsteps =

In the next section, we provide concrete examples of how
this method can be applied to adapt a transfer function to a
particular model, taking into account device and human ca-
pabilities.

ILLUSTRATIVE EXAMPLES

To create illustrative examples of subpixel interaction (Fig-
ure 6), we developed a cross platform software applica-
tion written in C++ that runs subpixel-enabled applications
through the WebKit browser engine. We used libpointing [5]
to get raw information from devices, apply transfer functions
taking into account hardware characteristics (input and out-
put resolutions and frequencies) as well as DHR, and access
remainders to produce floating pointer coordinates to control
a custom pointer.
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Figure 6: Illustrative subpixel interaction applications: (a) manipulating calendar events with minute precision; (b) precise CAD
object dimensioning; (c) image pixel accurate cropping; (d) selecting one frame of a video.

We used a sigmoid transfer function, similar to Figure 4
which is representative of transfer functions used by mod-
ern operating systems. Equation 8 describes this function
which we refer to as Fg. It produces unitless gain values be-
tween 1.0 and 10.0, where dX represents a relative distance
measured in motor space (in meters), dt is the elapsed time
since the last input event (in seconds), v = dX /dt, and v; and
vy are equal to 0.15 m.s~' and 0.5 m.s~! respectively. Thus,
F(dX,dt) =dX x Fg(dX,dr) is the transfer function used by
default to control the pointer.

1 v<v
Fe(dX,dt) = 14+9x VVZ__VV‘I Ve[ (8)
10 V>

When interacting with an object, we first compute Gope as
defined by Equation 4. If G is below the minimal gain
value defined by Equation 8 (Fg(dX,dt) = 1), then the
transfer function is blended with Gop to yield the function
H(dX,dt) = dX x Hg(dX,dt), where Hg is described by
Equation 9:

Gopt 1V < Vise
Hg(dX.,dt) = FG(dX dt) v>Voix (9)
(1—q)Gopt+q Fg(dX dt)  : elsewhere
g = v — Vise
Vpix — Vuse

We used a 22" Dell 2208 WFP display set to its native reso-
lution of 1680 x 1050 at 60 Hz, providing a pixel density of
about 90 PPI. Our input device was a Microsoft Sidewinder
X8 mouse with a 500 Hz polling rate. The mouse sensitiv-
ity was set to 4000 CPI, corresponding to its maximum con-
figurable value. We fixed RES 4,1 = 1000 CPI. Combined
with our particular transfer function, this configuration leads

to the following values:

Smax ~ 11 for G = 1.0
Vise = 0.0127m.s~"
Gpix = 1.0
00254 1.0
P RESscreen . Gpix

X FREQjppu ~ 0.141m.s ™!

Vpix /Vinin = 44 discrete speed values below Vpix are available
for subpixel interaction and transfer function blending.

Calendar

It is often convenient to enter and modify calendar events us-
ing direct manipulation. Depending on the number of hours
in the current view, it may not be possible to set event times
like flight or train departures requiring one minute precision:
a height of 720 pixels is needed for a 12 hour view and 1080
pixels for 18 hours. These heights may exceed typical calen-
dar window space. For example, an 18 hour view represented
in a 400 pixel window requires a modest 2.7 subpixels for
one minute precision. With subpixel input, it is even possi-
ble to represent a month view while still enabling individual
event manipulation to the minute. The calendar application
we created represents 17 hours in 272 pixels, yielding 16 pix-
els per hour (Figure 6a). With our particular setup, this view
requires 3.75 subpixels, which our transfer function Fg pro-
vides. For subpixel feedback, start and end times are shown
on each calendar event.

Computer-aided design

Computer-aided design (CAD) applications require precise
specification of object dimensions and placement. Direct ma-
nipulation is preferable given the graphical nature of the task,
but to achieve the required precision, current applications
resort to text entry or zooming. Precise feedback is often
shown already as a numerical measurement near the manipu-
lated object, but with subpixel input, the manipulation can be
made equally precise. We developed a small subset of an ar-
chitectural CAD application where it is possible to dimension
and position walls with one centimeter precision while main-
taining a view of the entire structure. For example, consider a
room plan where three walls are already drawn, and a fourth
vertical wall of length 2205 cm must be created and aligned
exactly. The whole drawing is viewed at a scale which maps
10 cm to 1 pixel (i.e. 1 :354). Here 10 subpixels are required



to perform the task with required precision (1 cm), which our
transfer function Fg again provides.

Cropping a high resolution image

Many digital cameras capture images exceeding 10 megapix-
els, yet most computer displays cannot show more than 2.5
megapixels. Cropping such an image to specific dimensions,
say 320 by 240 pixels, usually requires zooming. The crop
area can be so large that multiple zoom and pan operations
are required making the task difficult. For example, consider
a 17.8 megapixel image measuring 4215 by 4215 pixels. To
show this entire image in a 300 by 300 pixel window, it must
be scaled to 7% where one display pixel corresponds to 14
image pixels. To achieve image pixel precision, 14 subpixels
are required. Since this is more than Sp,x, we need to switch
from Fg to Hg (Equation 9) with Gope = 0.794 (Equation 4).
To facilitate subpixel output, a tooltip shows image-space co-
ordinates for the subpixel pointer and image-space size of
cropping rectangle (Figure 6¢). When cropping according to
visual details, lens-like feedback would be more appropriate.

Selecting a frame in a video

We replicated the Apple Keynote video interface where a 198
pixel wide slider is used to select a single “Poster Frame”
(Figure 6d). As an example, consider the TV show in Ta-
ble 1. At 30 frames-per-second, one pixel of the slider cor-
responds to 52 x 60 x 30/198 = 472.72 frames (i.e. 15.75
s) in the video. To achieve frame-level precision, 473 sub-
pixels are required: we again need to switch from Fg to Hg
(Equation 9), this time with Gope ~ 0.023 (Equation 4). We
informally tested this scenario with several participants. In
spite of the low value for Gy, all managed to comfortably
reach the intended frame and no one spontaneously noted any
change in pointer behavior. Note that selecting one frame in
this scenario corresponds to a 16.51 bit pointing task.

The strategies described in the above examples are specific
to the transfer function Fg and the particular hardware con-
figuration that we used. Had we used the same monitor with
a low-end mouse (400 CPI, 125 Hz) and the default trans-
fer function of Windows, OS X, or Xorg, Spmax would have
been less than 4. In all cases except the simplest Calendar
example, it would have been necessary to switch from Fg to
Hg.

DISCUSSION

In this section we provide guidelines for applying subpixel
in generalized data manipulation situations and enumerate
modifications which must be made to current operating sys-
tems and GUI toolkits.

Domain of applicability for subpixel interaction

There are three parameters which determine the applicabil-
ity of a subpixel-enabled floating pointer and custom transfer
functions: the number of available pixels (P); the number of
practicable subpixels (S, from Equation 3); and the cardinal-
ity of the underlying model (N). Using these we can define
two critical values for N: N1 = § x P, the value above which
custom transfer functions must be used to reach all values
of the model; and N2, the value above which custom trans-
fer functions can no longer operate due to usability issues.
These determine four zones (illustrated in Figure 7):

e N < P: all values of the model can be addressed with a
standard integer pointer, subpixel interaction is unneces-
sary but compatible;

e P <N < NI: all values of the model can only be addressed
with subpixel interaction, but a standard transfer function
is compatible without any change in pointer behavior;

e N1 < N < N2: to address all model values with subpixel
interaction, a custom transfer function like those described
earlier is required;

e N > N2: all model values cannot be addressed with sub-
pixel interaction.

standard transfer function | custom transfer

0 P N1  functon N2
' t t + >
standard po'nt:r L model
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floating coordinates pointer| cardinality

Figure 7: Four zones of applicability for subpixel and custom
transfer functions (see text for description).

While N1 is unequivocally specified, N2 is harder to de-
fine. As model cardinality increases, Gop; decreases but the
number of discrete speed steps available to interpolate be-
tween (Vuse, Gopt) and (Vpix, Gpix) remains the same (ngeeps,
Equation 7). For the custom transfer function to remain us-
able, it must remain gradual. No matter the definition we
might choose for this property, there will always be a point
where ngeps is not enough to preserve it within [Vise, Vpix]-
Extending the custom range over Vjix might also help, but
it will undoubtedly result in a perceivable modification of
the pointer behavior after some point. N2 captures this in-
evitable fact: for a given user and hardware configuration,
there will always be an upper limit on the model cardinality
that can be smoothly supported while preserving the standard
pointer behavior. Note that using devices with higher sensi-
tivity and frequency is the easiest way to push that limit since
it reduces Vppin which increases the number of discrete speed
steps available for interpolation.

Impact on operating systems and GUI frameworks

As stated above, our subpixel prototypes were implemented
using libpointing [5] to create a custom transfer function tak-
ing into account actual input device CPI and screen PPI. We
also took into account human precision capabilities (DHR)
and the cardinality of the model being manipulated to adjust
the transfer function when required®.

To support subpixel floating point coordinates universally,
operating systems and GUI frameworks need to make rela-
tively small, but fundamental changes. First, system trans-
fer functions must take into account input device sensitivity
so that higher device sensitivities result in higher precision.
Currently, operating systems generally translate higher de-
vice sensitivity to faster pointer movements either because
they do not take the sensitivity information into account or
because it is not provided by the device [5]. Device configu-
ration interfaces definitely need to be re-designed.

4Basic source code to create a subpixel libpointing application is available
from http://libpointing.org/


http://libpointing.org/

Operating systems then need to use the remainders stored be-
tween two input events to create floating point coordinates.
These subpixel coordinates would be dispatched by the win-
dowing system, and ultimately received by the GUI frame-
work. Framework event loops, methods, callback methods,
etc. also need to be updated to handle floating point coordi-
nates.

GUI frameworks also need to provide developers with a
way to take into account human limb resolution directly or,
even better, indirectly. Ideally, a developer would specify
model cardinality and the framework would alter the transfer
function used when a subpixel widget is manipulated. This
also requires that operating system transfer functions can be
changed dynamically, which is already achievable to some
extent on some systems. Frameworks with dynamic layout
capabilities can also adjust the size of widgets, making a sub-
pixel enabled slider smaller without sacrificing precise con-
trol of the underlying data. For example, the preferred size
of a slider would correspond to N1, and the minimal size of
a widget would correspond to N2.

Since limb resolution varies between individuals [4], the op-
erating system should provide a method to specify the current
user’s level of limb precision. This could be part of the input
device settings with default values set conservatively based
on the literature. Ideally, a simple calibration step would tune
this value to specific individual, perhaps using a game-like
procedure [6] rather than a dry experiment task like Bérard
et al. [4]. Since human resolution can improve with practice,
the calibration process should be updated intermittently, or
automatically adapted over time based on patterns of use —
like the strategy of adjusting the offset distance in the Shift
pointing technique [13].

CONCLUSION AND FUTURE WORK

Subpixel interaction is a fundamental way to increase direct
manipulation accuracy. For too long, positional input has
been artificially constrained by design decisions made when
input devices were about as accurate as the pixel density of a
display. Now that input device sensitivity far surpasses dis-
play capabilities, the subpixel methods, transfer functions,
and guidelines described above can enable interaction at a
level of precision bounded only by human capability. Best
of all, subpixel interaction does not change the way people
interact, remains compatible with other precision techniques
like ZUIs and Focus+Context, and would only require mod-
erate changes to current operating systems and toolKkits.

Our focus so far has been to enable subpixel interaction, but
there is future work to extend its application context and test
the potential benefit in actual settings. For example, formal
testing of subpixel-enabled interfaces with realistic direct
manipulation scenarios, experimental analysis examining the
trade-off between pure subpixel interaction and subpixel in-
teraction augmented by traditional precision techniques like
ZUIs and Focus+Context, and investigating subpixel appli-
cations to very sensitive absolute touchscreens. There is also
opportunity to extend the work of Bérard et al. [4] by measur-

ing DHR with a wider range of devices and a broader range

of participants. This will add even more substance to the
overarching subpixel philosophy: pixels may be the limit of

what we can see, but they should not limit what we can do.
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