
Using the PyMT toolkit for HCI Research

Thomas Hansen
University of Iowa

tehansen@cs.uiowa.edu

Christopher Denter
University of Koblenz-Landau
cdenter@uni-koblenz.de

Mathieu Virbel
txprog@gmail.com

Abstract
We discuss the use of PyMT, a post-WIMPmulti-touchUI
toolkit, for the purposes of performing research on human
computer interaction with multi-touch and similar novel
input technologies. We present a short overview of PyMT
as a software platform and line out several key features
that are of benefit for tasks arising in HCI research. We
argue that PyMT’s use of a dynamic language and design
goal of enabling rapid prototyping, it’s multi-input sup-
port, and integration with tools for dealing with quantita-
tive data make PyMT an ideal tool for anyone involved in
creating software interfaces in a research setting.

INTRODUCTION
Multi-touch and other new input technologies are becom-
ing widely available. Great diversity in input hardware
bringsmany challenges in HCI research of these interfaces
as well as makes it hard to program. PyMT is mean to
make rapid application development and prototyping pos-
sible in this setting. In this paper we give an overview of
pymt, and discuss specifically some of it’s features that are
useful for HCI research on multi-touch and related tech-
nologies.

Whether the goal is to build a real world application, a
proof-of-concept prototype, or software to perform a lab
experiment with participants ; we always need to imple-
ment software to define how it should work. The idea
behind PyMT is to be a toolkit that makes this task eas-
ier when dealing with multi-touch and related new input
technologies.

PYMT Overview
This section discusses the main features and ideas of
PyMT. For a more detailed discussion and related work
see [3]. The projects wiki and API documentation are also
good sources of information about implementation details
and features (available at http://pymt.txprog.net). PyMT
is an open source project, and can be modified by any-
one freely under the terms of the LGPL(which requires
changes to the core library to be made public under the
same license, but applications using the toolkit can be li-
censed under any terms).

Platform
PyMT and applications for it are written in Python[2], a
popular dynamic programming language. Python’s dy-
namic properties, concise syntax and compilation free

workflow allow for quick prototyping. The availability of
many open source libraries (modules) for a wide variety
of purposes lets programmers focus on the task at hand.
Like python, PyMT is cross platform and runs on Win-
dows, OSX, Linux/Unix. Relying on OpenGL for graph-
ical output allows PyMT to provide hardware accelerated
graphics. While PyMT provides drawing abstractions, ad-
vanced user can make direct OpenGL calls to perform
drawing operations for maximum flexibility.

Widgets
To program PyMT applications, programmers implement
widgets. PyMT provides a variety of ready to use wid-
gets, to allow developers to use commonly used interac-
tion techniques and extend them for their purposes. PyMT
provides multi-touch-ready widgets for many basic inter-
actions like rotate-scale-translate, buttons, layouts, slid-
ers, text input, virtual keyboards, etc. A scene graph can
be defined in code or declarative in XML syntax. Widgets
can be styled using CSS syntax, using id’s or classes. A
built in animation framework can be used to animate any
numerical property of arbitrary widgets easily.

A custom widget implementation will usually consist of
implementing methods for touch events and the draw
function, which is called each frame. Programmers can
implement these by subclassing or attaching event han-
dlers. So if programmers do not want to use any of the
provided widgets and the scene graph based architecture,
they can implement an application starting with single
widget, much like they would when using e.g. a toolkit
like Glut[1].

Input Providers
At the core, PyMT provides an abstract input architecture.
Support for new input devices or protocols is implemented
by writing input providers. PyMT already provides many
input providers for various hardware and systems. Some
supported input providers are :

• TUIO[5]
• Mouse
• Windows 7 multi-touch
• Windows Pen
• OSX multi-touch pads and mice
• Linux HID multi-touch

The input providers are responsible for reading data from
an input device and populating Touch objects with the in-

formation. Widgets are notified through events of new
touch objects and when they are updated. Because the
input information is presented as object instances, input
providers can add new functionality to touch objects that
reflect specific hardware capabilities. Programmers can
attach data to touch objects and query them about capabil-
ities or device origin.

At the most basic level a touch object is a 2D cursor ses-
sion. Input sources can be configured in a configuration
file and are named. The lines ’touch = wm touch’ and
’pen = wm pen’ on a windows 7 system for example will
cause application to receive input from both pen and muli-
touch modalities if available. Programmers can check a
touch events device property to distinguish between input
sources. Configuring the input sources in this manner al-
lows for flexibility and easier debugging. For example the
source code if touch.device == ’pen’ can stay unchanged
in the program, and the configuration can be changed to
’pen = mouse’ during debugging to simulate simple pen
interactions (The mouse input provider lets users place
multiple cursors using right click and drag them around
independently for debugging).

Dynamic modules
PyMT supports dynamic loading of modules. Program-
mers can use existing modules or write their own by load-
ing a module when an application is launched (command
line parameter) or during runtime (function calls). Being
able to load modules various existing PyMT applications
can be extended with the same functionality.

For example an existing PyMTmodule provides subtle vi-
sual feedback like for example in[8]. The module simply
implements a regular widgets that receives touch events
and draws the feedback. When it is activated, the widget is
placed at the root of the scene graph. Similar modules can
provide more detailed feedback, aid in debugging, intro-
duce additional functionality, modify running applications
and/or pre-process input events.

HCI RESEARCH USING PYMT
PyMT was originally conceived to provide a platform for
post-wimp multi-touch research. Various properties and
features of pymt offer concrete benefits to research prac-
tices in multi-touch computing.

Cross platform/input research
As commercial multi-touch solutions are becoming more
widely available, many of them offer SDK’s to allow pro-
grammers to develop software for their products[7, 6].
The widespread adoption of vertical integration in busi-
ness models however poses certain challenges in research
trying to identify overreaching concepts.

Having to implement several versions of a project so that
it can run on different hardware poses at the very least
practical problems. While write-once-run-anywhere is not
necessary for many real world applications (and arguably

can impose bad design choices). Having the possibility
to run exactly the same software on different hardware is
needed e.g. for research comparing different input hard-
ware. Based on the complexity of the interaction tech-
niques, PyMT applications for example work on many
multi-touch displays or suing a mouse without any modi-
fication or special code.

Collaboration efforts between different laboratories run-
ning similar hardware is also made easier by eliminating
the need for common infrastructure on the operating sys-
tem level. By using a cross platform toolkit such as PyMT
with support for diverse input hardware used in research
labs, the research community can create an environment
in which sharing software used to perform experiments
and collect data is easier. Placing the shared infrastruc-
ture at the toolkit level would make repeating experiments
and confirming results independently more plausible. Al-
though it is unclear if lack of common infrastructure is
really to blame for the apparent lack of collaboration of
this nature in HCI research.

Experiments & Data Collection
The scientific study of HCI and multi-touch user inter-
faces relies on being able to perform controlled experi-
ments and collect data which can be interpreted. PyMT
offers functionality to record input data, serialize it and
replay it. This can be very useful in the development pro-
cess for debugging purposes. More importantly it offers
a valuable tool in collecting quantitative data. By record-
ing input events, researchers can go back and analyse as-
pects of the experiment that were not explicitly built into
the experiments data collection ahead of time. The use of
dynamic modules allows recording or playback of input
events without the actual application even being aware of
it.

This is also another area where the PyMT’s use of the
Python programming language can be taken advantage
off. First of all, Python offers built in serialization of virtu-
ally any data structure, making it trivial for programmers
to store and load any objects or data created during exe-
cution. A variety of python modules, such as Scientific
Python[4]can be used to analyse the data e.g. statistically.
Visualizing collected datasets using OpenGL from within
PyMT is also a natural use of collected data. Pythons
scripting proprieties and many modules have made it a
broadly used tool in many other scientific disciplines such
Astronomy, Chemistry and various Biological disciplines.

As already mentioned being able to run the same software
in various settings can be of practical benefit. We argue
that if possible, it is in fact important to use the same soft-
ware when comparing different input devices or perform-
ing the same experiment in different settings. Software
bugs are an unavoidable part of software development,
and often times they can go undetected. Unintentional,
even if small, differences in how data is collected or a sys-

tem responds can have significant effects on results. Run-
ning the exact same program can avoid these pitfalls.

Rapid Prototyping of Interfaces and Interactions
Many design processes involve iterative design or early
prototyping. Python’s dynamic nature, and compilation
free workflow allows for quick prototyping. Many mature
GUI toolkits also allow for quickly putting together inter-
faces using pre-definedwidgets. Often times, they provide
additional tools like visual interface designers, something
PyMT does not yet provide.

PyMT however aims to provide rapid prototyping espe-
cially for custom interfaces that go beyond common inter-
face conventions. While it provides reusable widgets for
many tasks that often times come up in interface design,
PyMT makes the process of defining new widgets and in-
teractions as accessible as possible. Instead of focusing on
providing a feature complete set of pre-defined widgets,
PyMT focuses on letting programmers write code to han-
dle input events and create graphical output. We think that
making the touch event and draw handling accessible at a
higher level rather than relying on pre-definedwidgets and
UI guidelines allows programmers to more quickly create
custom interfaces.

Focusing on input processing and graphical output may
require a deeper understanding of computer graphics and
input models and more programming experience than us-
ing mostly common components. But we think it makes
more sense in the given context of multi-touch research,

because these novel interfaces have not been studied suffi-
ciently to establish comprehensive interface guidelines or
paradigms (or whether that would even be desirable).

BIBLIOGRAPHIE
1. Glut - the opengl utility toolkit.
http://www.opengl.org/resources/libraries/glut/.

2. Foundation, P. Python. http://python.org/.

3. Hansen, T.E., H. J. V. M. P. S., and Serra, T. Pymt: A
post-wimp multi-touch user interface toolkit. In Pro-
ceedings of Tabletops and Interactive Surfaces, 2009.

4. Jones, E., Oliphant, T., Peterson, P., et al.
SciPy: Open source scientific tools for Python.
http://www.scipy.org/, 2001.

5. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. Tuio: A protocol for table-top tangible
user interfaces. 2005.

6. Microsoft. Microsoft surface.
http://www.microsoft.com/surface/.

7. Technologies, S. Smarttable. http://smarttech.com/.

8. Wigdor, D., Williams, S., Cronin, M., Levy, R.,
White, K., Mazeev, M., and Benko, H. Ripples: uti-
lizing per-contact visualizations to improve user in-
teraction with touch displays. In Proc. UIST, pages
3–12, New York, NY, USA, 2009. ACM.

	INTRODUCTION
	PYMT Overview
	Platform
	Widgets
	Input Providers
	Dynamic modules

	HCI RESEARCH USING PYMT
	Cross platform/input research
	Experiments & Data Collection
	Rapid Prototyping of Interfaces and Interactions

