
UIMarks: Quick Graphical Interaction with Specific Targets

Olivier Chapuis
LRI - Univ Paris-Sud & CNRS; INRIA

F-91405 Orsay, France
chapuis@lri.fr

Nicolas Roussel
INRIA

F-59650 Villeneuve d’Ascq, France
nicolas.roussel@inria.fr

A C D G

Figure 1: Sample use of UIMarks in a drag-and-drop situation. While dragging an icon (A), the user enters the UIMarks mode,
points at a previously marked location using the bubble cursor technique (B), leaves the mode (C) and drops the icon (D).
Here, the activation of the mark not only moved the cursor but also created a temporary mark at the initial cursor location.
The user thus simply has to enter the mode again (E), point at the new mark (F) and leave the mode (G) to return there.

ABSTRACT
This paper reports on the design and evaluation of UIMarks,
a system that lets users specify on-screen targets and asso-
ciated actions by means of a graphical marking language.
UIMarks supplements traditional pointing by providing an
alternative mode in which users can quickly activate these
marks. Associated actions can range from basic pointing fa-
cilitation to complex sequences possibly involving user in-
teraction: one can leave a mark on a palette to make it more
reachable, but the mark can also be configured to wait for
a click and then automatically move the pointer back to its
original location, for example. The system has been imple-
mented on two different platforms, Metisse and OS X. We
compared it to traditional pointing on a set of elementary
and composite tasks in an abstract setting. Although pure
pointing was not improved, the programmable automation
supported by the system proved very effective.

ACM Classification: H.5.2 [Information interfaces and pre-
sentation]: User interfaces - Graphical user interfaces.

General terms: Design, Measurement, Performance, Ex-
perimentation, Human Factors

Keywords: Pointing, direct manipulation, macros.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’10, October 3–6, 2010, New York, NY, USA..
Copyright 2010 ACM 978-1-4503-0271-5/10/10 ...$10.00.

INTRODUCTION
Pointing facilitation techniques aim at improving the acqui-
sition of on-screen targets with a pointing device. Pointing
being arguably one of the most fundamental tasks in HCI [1],
research on these techniques is usually motivated by the idea
that small improvements in speed or accuracy may result in
large efficiency gains. Yet very few of the techniques pro-
posed by HCI researchers are actually used in existing sys-
tems. One reason for this is probably that most of them are
target-aware [25]: they require some knowledge about the
size and position of the targets and sometimes the ability to
modify them.

Deciding which of the on-screen objects should be consid-
ered as potential targets is a complex problem (e.g. windows
or widgets, paragraphs or characters). Target-aware point-
ing techniques also tend to work best on sparse layouts: in
dense layouts, occlusion and false activation problems can
quickly obviate the potential benefits [1]. Moreover, basic
interactions like rubber-band selection also require pointing
and clicking on the void space between targets, which can be
difficult with some techniques.

Target-aware pointing techniques usually aim at providing
quick access to all possible targets at a given time. In this pa-
per we present UIMarks, a system instead designed to facil-
itate access to a limited and specific set of targets. This sys-
tem is not intended to replace traditional pointing but rather
to supplement it by providing users with an alternative mode
they can deliberately activate based on their specific needs.
UIMarks supports the creation, configuration and use of user
interface marks, graphical objects that explicitly locate on-
screen targets and provide quick ways to interact with them.
This results in a new interaction model that can probably not

be replicated with any other technique, including customized
keyboard accelerators. Typical use consists of entering the
mode, selecting a mark using a target-aware technique – we
use the bubble cursor [11] – and leaving the mode, which
triggers actions possibly associated to the mark (Figure 1).

The paper is organized as follows. After reviewing some re-
lated work, we present the design of the UIMarks system. We
describe the techniques through which users interact with it
and provide some implementation details. We then report on
an experiment that compared UIMarks with traditional point-
ing on elementary and composite tasks and shows that al-
though it does not improve pure pointing, the programmable
automation it supports is very effective. We conclude with
directions for future work.

RELATED WORK
A substantial body of literature exists on target acquisition. A
fundamental tool in this area is Fitts’ Law [10, 19], that mod-
els movement time for the acquisition of a target of width W
at a distance D as a linear function of the index of difficulty
log2(

D
W + 1). Target-aware techniques usually try to reduce

D, to increase W , or both to facilitate pointing [1]. Endpoint
prediction can be used to temporarily bring targets closer to
the pointer or make it jump to them, for example [2, 12, 21].
The ninja cursors [16] reduce the average distance to targets
by attaching multiple cursors to a single device and using
knowledge about the targets to resolve pointing ambiguities.
Expanding targets [20] dynamically change W to provide a
larger area to interact with at the focus of attention. Semantic
pointing [5] and sticky icons [26] similarly expand the tar-
gets, but in motor space only. Another way to enlarge W is
to use an area cursor, i.e. a cursor with an activation area
larger than the standard one pixel hotspot [15, 26]. The bub-
ble cursor [11] refines this idea by dynamically resizing the
area so that exactly one target is selected at any time.

Area cursors sometimes make it impossible to select the void
space between targets (an intrinsic limitation of the bubble
cursor, for example). DynaSpot [7] overcomes this problem
by adapting the size of the cursor’s activation area depend-
ing on movement speed. Target-aware pointing techniques
also tend to work best on sparse layouts, although space par-
titioning algorithms can be used to alleviate this problem [3].
Lastly, target-aware techniques can be quite visually distract-
ing because of the growing and shrinking of objects, or be-
cause of the discontinuities introduced by pointer warping.

Adaptive solutions have been proposed that automatically
compute a subset of the targets on which the pointing tech-
nique is then applied. Bubbling menus [24], for example, ac-
celerate the selection of frequently used items by increasing
their activation areas. It has also been suggested to aggregate
pointer clicks and drags into a pseudo-haptic magnetic field
to make frequently accessed targets easier to select without
requiring prior knowledge of them [14].

Target-agnostic techniques similarly focus on user actions
instead of possible targets. The angle mouse, for exam-
ple, adjusts the control-display gain based on angular devia-
tion [25]. MAGIC uses eye tracking to coarsely define an area
of interest in which the pointer is automatically warped [27].

Rake cursor [6] uses the gaze position to select a cursor from
a grid of several, obviating the potential disorientation caused
by pointer warping at the cost of slightly increased visual
clutter. All these techniques have some advantages over the
target-aware ones, but have the disadvantage of considering
all pixels equal which leads to limited performance improve-
ments [25].

DESIGN PROCESS
The work that led to UIMarks started with the idea that desk-
top interactions might be facilitated if the pointing device
could be used to control more than one on-screen pointer.
We did not want the pointers to be system-defined, like with
the ninja or rake cursors [16, 6]. Rather, inspired by works
such as the local tools [4], we envisioned a system that would
make it possible for users to create new pointers anywhere
on-screen and to easily choose the one they would like to
control at a given time. Different prototypes implementing
this idea were shown to several HCI researchers, designers
and students (Figure 2). The concept of multiple pointers at-
tached to the same device generated little interest. But users
of the prototypes very much liked the ability it provided to
mark on-screen places where they might want to return to in
the future. Instead of multiple pointers, we thus decided to
support the creation, configuration and use of such marks.

Figure 2: Early prototype of a multi-pointer editor. Keyboard
shortcuts make it possible to select the pointer actually con-
trolled by the mouse (the black one) by cycling or switching
between alternatives.

The marks were initially envisioned as small on-screen col-
ored disks that users could place using their standard point-
ing device. In order to minimize visual distraction, we de-
cided that they would be accessible only when in a certain
mode. Activating a mark, i.e. having the pointer automati-
cally moved to the corresponding location, was thus a mat-
ter of entering the mode, selecting the mark and leaving the
mode. We decided to use a bubble cursor and keyboard short-
cuts to support this selection. The bubble cursor was cho-
sen because it is particularly efficient in sparse target lay-
outs and appropriate for interfaces with an explicit selection
mode [11]. Note, however, that UIMarks is not conceptually
tied to this technique. It is an adaptable system that can be
used to define a set of targets on which a chosen target-aware
technique is to be applied.

We wanted our work to be easily applicable to existing
graphical environments without necessarily requiring the
modification of applications. We implemented a first ver-
sion of UIMarks meeting this requirement on two different
platforms: OS X and the experimental X Window system
Metisse [8]. The use of these implementations in real-life
conditions suggested a number of improvements. Realiz-

ing the potential benefits of the system for big and multiple
screens, we added the possibility to increase the acceleration
of the bubble cursor to reduce clutching in these configu-
rations. We also noticed that after using a mark, we often
wanted to go back to the entering point, i.e. the point where
we entered the mode.

As our interest shifted from simple pointing tasks to the oper-
ations that follow, we got particularly interested in repeated
interaction sequences that imply going back and forth be-
tween two or more locations. We modified the system so
that it automatically created a new mark at the entering point.
This made back and forth movements easier but also created
a lot of unneeded marks that acted as distractors for the bub-
ble cursor. We tried different ways to alleviate this problem,
e.g. by imposing an upper limit on the number of system-
created marks or making them temporary. We tried several
definitions of that term that combined temporal and activa-
tion limits. We also tried to attach marks to specific graphical
objects rather than the screen.

Seeing different advantages and drawbacks in the aforemen-
tioned possibilities, we concluded there was a need for user-
level configuration mechanisms. We created a simple graphi-
cal language to represent the different parameters and imple-
mented basic interaction techniques to support their config-
uration. We then extended these mechanisms to support the
specification of actions to be executed when a mark is acti-
vated, using some basic forms of end-user programming [18]
to go beyond point-and-click interactions.

CURRENT DESIGN
The UIMarks system can be seen as an effort to provide some
user programmable automation over direct manipulation in-
terfaces. Marks are somewhat similar to the bookmarklets
available in web browsers that trigger the execution of some
code whenever an associated URL is visited. They can be
placed anywhere on-screen and provide a visual representa-
tion of the associated action, which can be customized by
the user. As opposed to traditional keyboard accelerators and
macros, the system emphasizes recognition over recall and
supports compound pointer-based interactions instead of the
sole execution of pre-defined commands.

To illustrate the potential of the system, let us consider the
simple but common case where one wants to facilitate the
selection of tools in a palette. One starts by placing a mark
M1 on the palette. As one usually wants to return to the orig-
inal locus of interaction after selecting a tool, one can con-
figure M1 to create a new temporary mark M2 at the entering
point. One can also place M1 on a tool and configure it so it
automatically clicks – i.e. selects the tool – and brings back
the pointer to the entering point. This reduces the number
of explicit actions but also limits the use of M1 to the selec-
tion of one particular tool. To alleviate this, one can place
additional similarly configured marks on other tools and off-
set them from their target to facilitate their selection with the
bubble cursor. Instead of creating multiple marks, another
possibility is to configure M1 so that after moving the pointer
over the palette, it gives its control back to the user until a
button is clicked – i.e. a tool is selected – and then brings
back the pointer to the entering point.

Before providing more details about the actual user interac-
tions with the system and our two implementations, we will
define more precisely the concept of a mark by specifying its
attributes, the actions that can be attached to it and how it is
graphically represented.

Mark attributes
A mark is a uniquely identifiable object associated to an on-
screen (x, y) position and further characterized by three at-
tributes: its creator, target and lifetime.

Creator – Marks can be created by the user, in anticipation
of future use. They can also be created by UIMarks itself as
a consequence of the activation of another mark, or on behalf
of other applications. An application might request the cre-
ation of a temporary mark on the Ok button of a dialog box,
for example.

Target – Marks can be either attached to the screen, or to a
particular graphical object such as a window or possibly a
widget. In the latter case, activating the mark will raise the
enclosing window and give it the keyboard focus. Moving,
resizing, iconifying or closing the window will also impact
the mark.

Lifetime – Marks can be permanent or temporary, lasting for
only a limited time or number of activations.

Possible values for mark attributes can be summarized as:

creator ∈ {user, uimarks, otherapp}
target ∈ {screen,window(id)}

lifetime ∈ {permanent, temporary}

Actions
Each mark has an associated primary action that is triggered
whenever the mark is activated. Incidental preceding and fol-
lowing actions can also take place immediately before and
after the primary one. When executed, all three actions have
access to the mark attributes as well as the location of the
entering point.

Preceding action [optional] – The only possible preceding
action is the creation of a new mark at the entering point.
The characteristics of this mark, however, can be fully spec-
ified. Note that this action must be executed first because of
the side effects the primary one might have on the initial con-
text (e.g. it might change the window stacking order).

Primary action – It can be as simple as “go there”, “click” or
“double-click”. It can consist in a user-defined combination
of such basic interactions. But it can also be arbitrarily com-
plex, although it should remain describable to the user in a
simple way, either textual (e.g. “switch to the virtual desktop
on the right”) or graphical.

Following action [optional] – Any action not occurring im-
mediately on activation or taking place at another location.
This action might involve user interaction, e.g. “wait for a
user click and come back”. It that case, specific feedback is
added to the standard pointer representation to show that the
mark activation is still in progress.

http://en.wikipedia.org/wiki/Bookmarklet

The execution steps triggered by the activation of a mark can
be summarized as follows, those between brackets being op-
tional:

1. [create a mark (with a certain configuration) at the en-
tering point]

2. [raise the window relevant to the mark, if any, and give
it the keyboard focus]

3. execute the primary action

4. [execute the following action]

Graphical representation
Each mark is represented on-screen when in UIMarks mode
by a disk shown at its location. The external and internal
borders of the disk and its fill color are used to visualize the
basic attributes of the mark (Figure 3).

Come back Come back
& click

Wait for a user click
and come back

Following actions (examples)

Go there Go there
& click

Go there
& double-click

Primary actions (examples)

Create a mark with default attributes that...

goes
there & clicks

goes there
& double-clicks

goes
there

Create a
window-speci!c
temporary mark

Preceding actions (examples)

uimarksuser other
application

Creator Lifetime

permanent temporary

Target

screen window

Figure 3: Visual representation of the attributes

The primary action triggered by the mark is represented by
drawings inside the disk while incidental actions are repre-
sented on the outside (Figure 4). The preceding creation of
a new mark is denoted by a forward arrow starting on the
left side of the disk. The new mark can be represented with
extensive details at the end of this arrow. More compact rep-
resentations are also possible if it uses standard attribute val-
ues and causes no incidental action. Following actions are
denoted on the right side of the disk, a backward arrow indi-
cating a pointer translation back to the entering point.

Come back Come back
& click

Wait for a user click
and come back

Following actions (examples)

Go there Go there
& click

Go there
& double-click

Primary actions (examples)

Create a mark with default attributes that...

goes
there & clicks

goes there
& double-clicks

goes
there

Create a
window-speci!c
temporary mark

Preceding actions (examples)

uimarksuser other
application

Creator Lifetime

permanent temporary

Target

screen window

Figure 4: Visual representation of the actions

To facilitate its selection and activation in certain situations,
a mark can be offset from its target. In this case, a small
unselectable spot is left to indicate the target, connected to
the mark by a line segment (Figure 5).

Figure 5: UIMark example. An offseted, user-created, window-
specific and permanent mark that clicks on the rectangle tool and
sends the pointer back to the entering point.

INTERACTION DETAILS
In this section, we describe the interactions used to create,
select, configure, activate and delete marks. We focus our
attention on the principles that guided the design of these in-
teractions rather than implementation details, some of which
will be described in the next section.

As previously stated, all UIMarks interactions take place in
a specific mode outside which the marks are not visible. In
this mode, a semi-transparent overlay is displayed on top of
all windows to preserve the user’s context but visually dif-
ferentiate the marks (Figure 1). The mode is associated with
continuous pressure with the non-preferred hand on a spe-
cific key, Windows or Fn, for quick and easy access.

We use a slightly adapted version of the bubble cursor: the
selected mark is scaled up by a factor of 5/3 to differentiate
it, a small cross locates the entering point and the location
of the pointer is indicated by a small dot. Leaving the mode
activates the selected mark, if any. Note that since no button
of the pointing device is used to enter the mode, select a mark
and leave the mode, these operations can be executed during
drag-and-drop operations (Figure 1). As the bubble cursor
always captures one of the existing marks, two operations
allow one to leave the mode without activating it: one that
moves the pointer back to the entering point and the other
that leaves it where it is. These operations are triggered by
pressing the Escape and Enter keys, or clicking the Right
and Middle buttons of the pointing device.

In addition to pointing-based selection using the bubble cur-
sor, users can circulate between marks using the Tab key. By
pressing Shift followed by an alphanumeric key, they can
also bind that key to the selected mark: from that moment
forward, pressing the key will leave the mode and activate
the mark, and the bound symbol will be shown next to it.

A button click on an empty space with the pointing device
creates a new mark with default attribute values. The newly
created mark is automatically selected by virtue of the bub-
ble cursor. Whenever a mark is selected, specific interaction
techniques make it possible to (re)configure its target, life-
time and associated actions, the latter being chosen from a
predefined set or incrementally specified as explained in the
next section. The selected mark can be deleted by press-
ing the Backspace key. Marks can be moved by a simple
drag-and-drop interaction and offseted the same way using a
keyboard modifier (Alt) or alternative button (Right).

We have experimented with the use of the system on a laptop
with a touchpad and an external mouse. This combination
of devices can be used in two ways. One can be specifically

assigned to UIMarks and the other to conventional pointing.
Note that although this supports implicit bimodal interaction,
it requires good pointing skills with both hands. The devices
can also be used in a bimanual rather than bimodal way: the
mouse for selecting marks and the touchpad as a mode trigger
and to configure them, for example.

We acknowledge that configuring a mark can be time con-
suming. However, this should not happen too often and the
power of the marks resides in their use: their fast selection
and activation, which can trigger operations that go beyond
simple pointing.

IMPLEMENTATION DETAILS
Implementing UIMarks in a window system requires the
ability to observe, alter and generate input events, to dis-
play a semi-transparent overlay, and to determine target win-
dows and track them. Because Metisse[8] provides full con-
trol over its input and output mechanisms, implementing
UIMarks on it was pretty straightforward. Specificities of
this implementation include the automatic creation of holes
in windows overlapping marked ones to show the marks in
context and the availability of several primary actions re-
lated to virtual desktops. Mouse-based interactions support
the incremental configuration of a mark: scrolling the mouse
wheel over parts of its graphical representation allows one
to specify each attribute or action separately by circulating
between possible values.

Our OS X implementation required a somewhat unusual
combination of public but unevenly documented APIs. It
uses Quartz 2D to create an overlay window that covers the
whole display space independently of the number of physi-
cal displays. It controls pointer acceleration through the HID
System Manager and uses CoreFoundation’s distributed noti-
fication center to receive mark-related commands from exter-
nal applications written in any language (two lines of Python
code are all it takes to request the creation of a mark, for
example). Simple keyboard-based techniques allow users to
configure the marks. When creating one, pressing the Shift
modifier attaches it to the window underneath rather than the
screen, and Ctrl makes it temporary rather than permanent.
Pressing the t and l keys (for target and lifetime) later al-
lows to toggle these settings for a selected mark. Pressing the
Space key also allows to specify the preceding, primary and
following actions of a selected mark by cycling through pre-
defined combinations, e.g. “go there, click & come back”,
“create a temporary mark & go there”. The window man-
agement services offered by Apple’s public APIs being quite
limited1, we resorted to using the Accessibility API and the
SetFrontProcess function to track windows and to raise
them. This causes unwanted flashes when we attach marks to
windows as we need to temporarily hide the UIMarks overlay
to query the Accessibility API, as well as occasional modifi-
cations of the window stacking order.

Real use of UIMarks on the two platforms suggests that cer-
tain global aspects of it should be left configurable by the
user. This includes the default target and lifetime for newly

1A special connection to the window server is notably required to manage
other applications’ windows, which is exclusively maintained by the Dock.

created marks, for example, as well as the definition of the
temporary lifetime: limited in time, in the number of acti-
vations or both? The first author’s system is configured so
that marks are permanent and attached to windows by de-
fault. His temporary marks have a lifetime of 30 seconds but
are automatically destroyed on activation. Moreover, when
one is created, all other temporary marks within a distance of
100 pixels are automatically destroyed. These settings help
maintain a balance between facilitating back-and-forth inter-
actions and keeping the number of marks reasonable.

The impact of some window management operations is also
difficult to decide. Although it seems reasonable to destroy
the marks associated to a window being closed and to move
the marks of a window being moved, what should be done
when it is iconified, for example? Hiding the associated
marks might seem the more coherent thing to do (it is the
first author’s personal choice), but keeping them visible pro-
vides a quick way of deiconifying the window on activation.
Resizing and scrolling operations are also problematic. Our
current implementations do nothing special about them (we
will come back to that at the end of the paper).

EXPERIMENT
Informal use of UIMarks in real-life conditions suggested it
might provide advantage over traditional pointing in certain
situations. Before considering whether people would want
to use our system and whether they would manage to do
so, we wanted to clearly establish whether and when they
could expect significant performance benefits. We thus de-
cided to evaluate UIMarks from a low-level perspective, in a
controlled setting.

The use of a specific mode for target-aware pointing raises
a complex question: under which conditions do the poten-
tial benefits of the bubble cursor and mark-associated actions
outweigh the mode-switching costs? Answering that ques-
tion is not easy because of the many cases to consider. The
target can be directly under, close to or far from a mark, for
example, and various actions can be thought of. The tasks to
consider are composite ones mixing mode switching, bubble
cursor pointing, pointer warping, traditional pointing and au-
tomated actions. They are different from the simple tasks
used in previous work on the bubble cursor, for example,
which makes the results of this work hardly usable in our
case.

In the rest of this section, we report on a lab experiment that
compared UIMarks to traditional pointing on abstract com-
posite tasks designed after common real-life scenarios. The
main factor of the experiment was the technique (TECH):
UIMarks (UIM) or traditional pointing (STD).

Scenarios and Tasks
The first scenario we considered is a simple target acquisition
like clicking on a button, for example. In the case of STD, the
user has to point at the target and click on it. We call this task
SimpleClick. UIM supports this scenario through the following
tasks:

(i) Simple - A mark that clicks is over the target. The user just
needs to activate it.

(ii) SimpleClick - A mark is over the target. The user has to
activate it, then click on the target.

(iii) Approach - There is no mark over the target. The user
has to activate a mark close to it, then point at it and click.

The second scenario we considered is the selection of an item
in a pull-down or pop-up menu. In the case of STD, it is a
two-step process: the user has to point at a target and click
on it, which reveals a second target within a short distance
to acquire in the same way. We call this task Menu. A corre-
sponding UIM task is:

(iv) Menu - A mark that clicks is on the first target. The user
has to activate it, then point at the revealed target and click
on it.

The UIM definition of Menu is very similar to Approach. Since
we are mainly interested in pointing rather than target search,
we can even consider the two tasks as quasi-equivalent if we
assume the user knows where the second target will appear.
Note however that when comparing the UIM and STD tech-
niques, Approach with UIM should be compared to SimpleClick
with STD, not Menu.

The third scenario we considered corresponds to return tasks
consisting of a forward and a backward sub-tasks, the latter
bringing the pointer back to the starting point or close to it.
As we already said, after selecting a tool in a palette (Simple-
Click) or an item in a menu (Menu), one indeed often returns
to the original locus of interaction to resume it. In the case
of STD, the backward sub-task can be seen as a new target
acquisition: the user has to point at a target close to or at the
starting point and click on it to delimit the task. We call this
sub-task Back and combining it with the forward STD tasks
gives two return tasks: SimpleClick|Back2 and Menu|Back. For
UIM, we consider the following return tasks:

(v) Back - Follows a forward sub-task (i− iv) on a mark that
creates a temporary mark at the entering point. The user
comes back by activating the temporary mark and has then
to click to delimit the backward sub-task.

(vi) AutoBack - Follows a forward sub-task (i− iv) on a mark
that automatically moves the pointer back to the entering
point. The user simply has to click.

(vii) BackApproach - same as Back except the final target is not
at the entering point, where the temporary mark is, but
close to it. The user has to activate the temporary mark,
point at the final target and then click.

(viii) AutoBackApproach - same as AutoBack except the final tar-
get is again not at the entering point but close to it. The
user has to point at the final target and click.

To summarize, for STD, we considered 2 forward tasks (Simple-
Click and Menu), 1 backward task (Back) and thus 2 return tasks
(SimpleClick|Back and Menu|Back). For UIM, we considered 4 for-
ward tasks (i − iv), 4 backward tasks (v − viii) and thus
16 return tasks. Covering all these tasks is not possible in

2We use the | sign to delimit the forward and backward sub-tasks.

a single reasonably sized experiment. We therefore decided
to focus on a few return tasks chosen so that all the forward
and backward sub-tasks would be used at least once, taking
into account the quasi-equivalence of Menu and Approach with
UIM. Table 1 shows the tasks actually used for the experiment
and Figure 6 illustrates the environment in which they were
performed.

UIM STD

Menu|Back Menu|Back

Simple|AutoBackApproach

SimpleClick|BackSimpleClick|AutoBack

SimpleClick|BackApproach

Table 1: Experiment tasks. Rows indicate which STD task
should be used for comparison for each UIM task.

Forward sub-tasks

Backward sub-tasks

Start

Simple[Click]

[Approach] [Auto]Back

Start

Menu

Start

Figure 6: Users need to position the pointer inside the Start
target to start a trial. They should wait until the target changes
color, which indicates they can execute the task. Timing starts
on their first action.

Apparatus
We conducted the experiment on a high-end workstation run-
ning X Window and a specifically designed OpenGL appli-
cation. The display was a 30" LCD monitor with a resolution
of 2560×1600 (100 dpi). We used a 600 dpi optical mouse
making it possible to cross the whole screen without clutch-
ing using the default X Window acceleration function.

Distances and Widths
The tasks used in the experiment depended on a series of
“factors”. Our main factors, besides the technique, were the
size of the targets (SIZE) and the distance from the starting
point to the first one (DIST). All the targets in a given in-
stance of a task had the same size: they were either small (ST,
6 pixels) or normal (NT, 24 pixels). The distance to the first
target was either small (SD, 512 pixels), medium (MD, 1280
pixels) or large (LD, 2048 pixels).

We fixed the distance to the secondary target of the Approach
and Menu sub-tasks to 96 pixels in the movement direction.
For UIM, we also had to specify the number and arrangement
of on-screen marks besides those required for the tasks. To

simplify the experiment and because UIMarks is rather in-
tended for sparse layouts, we used a grid of extra marks ar-
ranged every 368 pixels starting from the location of the first
target of the task and at least that distance away from the
starting point.

Note, that the DIST factor inevitably interacted with the grid
of extra marks. When the distance was small (SD), there
could be no mark between the starting point and the first tar-
get. When the distance was medium (MD), there were nec-
essarily some marks between the starting point and the first
target, and beyond it as well. For large distances (LD), we
made sure there would be no mark accessible beyond the first
target. This made it possible for users to take advantage of
the screen edge to facilitate the acquisition of the target.

Design
Twelve unpaid volunteers participated in the experiment (2
female). They ranged in ages from 22 to 35 and were all
experienced mouse users.

The experiment was a within-participant 2 (TECH) × 2
(SIZE) × 3 (DIST) design for each tasks. Participants al-
ways performed the STD tasks in the following order: Simple-
Click|Back, then Menu|Back (simple to complex). For UIM, two
orders were used: SimpleClick|BackApproach, Menu|Back, Simple-
Click|AutoBack & Simple|AutoBackApproach; and the reverse order.

For each task, we blocked by TECH and then DIST, SIZE
being randomly assigned. Participants either began with UIM
or STD, and in the case of UIM, either with the first order or
the reverse one. That gives four orders that we crossed with
three orders of DIST obtained with a latin square to get the
required twelve orders for the TECH×DIST crossing.

The experiment lasted approximately 45 minutes. Partici-
pants started each task with a training phase consisting of a
series of 4 trials for each full condition. The measured phase
then consisted of a series of 6 trials for each full condition.
Participants thus performed 2 × 2 × 3 × (4 + 6) = 120
trials for each task, 72 being measured. Overall, a total
of 12 × 72 = 864 measures were collected for each task
(12× 6 = 72 for each full condition).

Participants were instructed to perform the tasks as quickly
as possible and to minimize click errors. Note that since all
the sub-tasks except Simple required participants to click on
one or more target(s), click errors had to be corrected and
thus impacted negatively on the measured time. UIMarks-
specific errors in UIM tasks invalidated the trial, which the
participant had then to redo. These errors include the se-
lection of an incorrect mark, for example, or the use of the
UIMarks mode for an incorrect number of times.

Results
Our results were analyzed considering the full factorial
model

TMT ∼ TECH× SIZE× DIST× Random(PARTICIPANT)

for each task, where TMT is the task movement time. As we
were mainly interested in the potential benefit of UIMarks,
we did not take into account invalid UIM trials, i.e. those

TECH TECH×SIZE TECH×DIST

Box F1,11 p F1,11 p F2,22 p
Contents Tukey HSD Tukey HSD Tukey HSD

Menu| 43.3 <0.0001 82.6 <0.0001 2.21 0.1338
Back UIM > STD ST: UIM >+ STD SD > MD <> LD

NT: UIM <> STD
Simple| 131 <0.0001 353 <0.0001 2.89 0.0770

AutoBack UIM > STD ST: UIM >+ STD STD: SD > LD > MD
Approach NT: UIM >− STD UIM: SD > MD <> LD

SimpleClick| 868 <0.0001 457 <0.0001 9.70 0.0010
AutoBack UIM >++ STD ST: UIM >+++ STD STD: SD > LD > MD

NT: UIM >++ STD UIM: SD <> MD <> LD
SimpleClick| 27.3 0.0003 25.7 0.0004 0.769 0.4753

Back STD > UIM ST: STD <> UIM STD: SD > MD > LD
Approach NT: STD >+ UIM UIM: SD > MD <> LD

Table 2: Results of the ANOVA and post-hoc Tukey tests for
each task. Adding the task as a factor in the ANOVA leads to
stricter Tukey tests but does not invalidate the main results. The
task named in the left column is the UIM one (see Table 1 for the
corresponding STD task). A > B means that A is significantly
faster than B (α = 0.05), additional +s mean that the speed-up
is of more than 25%, 40% or 60% and − means that the speed-
up is of less than 10%. A<>B means the test does not reveal a
significant difference (but that A is faster than B).

during which participants had made a UIMarks-specific error
(1.7% of them).

Table 2 shows the results of the ANOVA for the TECH fac-
tor and the TECH×SIZE and TECH×DIST interactions for
TMT. The effect of SIZE and DIST are always significant (p <
0.0001) and are not included in that table. As one would ex-
pect based on the existing literature, participants were faster
with the normal-sized targets than with the small ones and
TMT increased as DIST increased (Figures 7 and 8). We thus
turned our attention to the TECH×SIZE and TECH×DIST in-
teractions: does SIZE impact the difference between UIM and
STD? Does DIST have the same effect on UIM and STD?

The differences found between DIST conditions were lower
for UIM than STD (see Figure 8 and the results of the post-
hoc Tukey test in the last column of Table 2). However, the
TECH×DIST interactions are not very strong compared to
the TECH×SIZE ones: the TECH×DIST interaction is never
strong enough to change the result of the global post-hoc test
between UIM and STD for a given DIST (second column of
Table 2), which is often the case with the SIZE factor. One
can indeed see on Figure 7 and in the third column of Table 2
that UIM is especially efficient for small targets.

We now detail our results for each UIM task of the experiment,
providing additional information to Table 2 and Figures 7
and 8 obtained by looking at intermediate times omitted for
brevity:

Menu|Back: UIM is faster than STD (more than 25% faster for
small targets). Intermediate times show that the same is true
for Menu alone. This sub-task’s automated clic probably pro-
vides the decisive advantage on small targets, accentuated by
the precise pointer warping of Back.

Note that if we consider the UIM Menu sub-task as an Approach
sub-task and thus compare the UIM Menu|Back task time to the
STD SimpleClick|Back one (instead of STD Menu|Back), STD be-

NT ST NT ST NT ST NT ST

 Me.|Ba. Si.|Au.Ba.Ap. Si.Cl.|Au.Ba. Si.Cl.|Ba.Ap.

T
a
s
k
 T

im
e
 (

m
s
)

0
1
0
0
0

3
0
0
0

STD UIMarks

Figure 7: Task time for each TECH by SIZE for the tasks of
the experiment (two letters abbreviation notation for the tasks
names). Error bars in all the figures represent the 95% confi-
dence limits of the sample mean (mean± StdErr × 1.96)

LD MD SD LD MD SD LD MD SD LD MD SD

 Me.|Ba. Si.|Au.Ba.Ap. Si.Cl.|Au.Ba. Si.Cl.|Ba.Ap.

T
a

s
k
 T

im
e

 (
m

s
)

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0 STD UIMarks

Figure 8: Task time for each TECH by DIST for the tasks of the
experiment (two letters abbreviation for the tasks names)

comes faster than UIM for both target sizes (more than 25%
faster for normal sized targets). In other words, using UIM to
simply approach a target does not lead to any benefit.

Simple|AutoBackApproach: UIM is faster than STD (more than
25% faster for small targets and less than 10% for the nor-
mal sized ones). Intermediate times show even better per-
formance gains on Simple, UIM being more than 40% faster
for small targets and between 10% and 25% faster for nor-
mal sized ones. The manual approach required by AutoBack-
Approach seems again costly, even though it is automatically
initiated.

SimpleClick|AutoBack: UIM is much faster than STD (more than
60% faster for small targets and more than 40% for the nor-
mal sized ones). Intermediate times show that UIM is more
than 40% faster than STD for SimpleClick alone on small tar-
gets, probably because of the precise pointer warping. The
same precise pointer warping automatically initiated by Auto-
Back probably accentuates this to provide the decisive advan-
tage for normal sized targets.

SimpleClick|BackApproach: STD is faster than UIM (more than
25% faster for normal sized targets). The backward approach
sub-task again impedes performance, strong enough to re-
verse the result observed with SimpleClick|AutoBack on normal
sized targets and cancel the benefit on the small ones.

Summary
Difference in performance between UIM and STD depends on
the nature of the forward and backward sub-tasks and on the
SIZE factor. More precisely: (i) Approach and BackApproach put
UIM at a disadvantage independently of the target size; (ii)
Simple, SimpleClick, Menu, Back & AutoBackApproach are neutral or
slightly advantage UIM for normal-sized targets and clearly
advantage it for the small ones; and (iii) AutoBack provides
a strong advantage to UIM even in the case of normal-sized
targets.

Using UIMarks to simply approach a target did not lead
to any benefit and was even slower than directly acquiring
it. UIMarks is not a general-purpose pointing facilitation
system: the costs introduced by its use cannot be compen-
sated unless one takes full advantage of the benefits it offers
(e.g. precise pointer warping and programmability). How-
ever, real-life situations might be more favorable to it than
this “pure pointing” experiment. As an example, a UIMarks
approach performs the additional action of raising the win-
dow on which the mark was placed, which can be useful if
it is fully or even partially overlapped. Note also that the
UIM Back task brings the pointer back to the exact location
where the user entered the UIMarks mode. We believe the
benefit of this might be higher in real-life settings where that
precise point might be of importance and difficult to locate.
More generally, even in cases where precision does not mat-
ter, UIMarks might provide some benefit by simply reducing
the number of possible choices for that location [22].

At the end of the experiment, participants were asked whether
they felt they had been faster with UIMarks and whether they
found it easy to use. They were asked to rate these feelings
on a five point scale: very fast/easy (5), fast/easy (4), nei-
ther fast-slow/easy-difficult (3), slow/difficult (2) and very
slow/difficult (1). All the ratings are ≥ 4 for speed and ≥ 3
for easiness with means of 4.08 and 3.92. This is really en-
couraging and in accordance with our quantitative results and
the very low error rate in UIM tasks.

Extrapolation based on an additive model
Given the results of the above experiment, we can estimate
the movement times for all the tasks initially considered (cf.
Scenarios and Tasks) by using a simple additive model: the
movement time for a task A|B can be estimated by adding
the intermediate times for the sub-tasks A and B measured
through two experiment tasks A|C and D|B. Note however
that such a simple additive model can only lead to approxi-
mate calculations of the movement times because of chunk-
ing and the fact that several tasks are often performed in par-
allel [17].

As an example, the movement time for Simple|AutoBack can be
estimated from Simple|AutoBackApproach and SimpleClick|AutoBack.
Doing so suggests a strong advantage for UIM on this task
(more than 60% speed-up). The movement time similarly
estimated for Approach|BackApproach suggests a 25% advantage
for STD independent of the target size (this is presumably the
worst case possible for UIM, none of the targets being under
a mark). The movement time estimated for Approach|AutoBack
suggests an advantage for UIM of at least 10% on both target

NT ST NT ST

Menu|AutoBackApppoarch Simple|BackApproach

T
a
s
k
 T

im
e
 (

m
s
)

0
1
0
0
0

3
0
0
0

5
0
0
0

NT ST NT ST

0
1
0
0
0

3
0
0
0

5
0
0
0 e1−STD e1−UIM e2−STD e2−UIMe1−STD e1−UIM e2−STD e2−UIM

Figure 9: Task time for each TECH by SIZE. Plain bars repre-
sent the task time for experiment two, as the hashed bars repre-
sent the estimated task time from the first experiment.

sizes. AutoBack might thus be able to compensate the cost of a
forward Approach.

To verify this additive model, we conducted a second lighter
experiment similar to the first one using the following tasks:
Simple|BackApproach and Menu|AutoBackApproach. These tasks
were chosen for two reasons. First, the estimated differences
on them between STD and UIM were not very important. Sec-
ond, Simple had been combined with an automated task in the
first experiment and Menu with a non-automated one, so we
wanted to invert this choice.

We followed the exact same design and procedure as in the
first experiment. The same 12 volunteers participated again.
The experiment lasted approximately 25 minutes and we
recorded only 1.1% of UIM errors. Figure 9 shows the results
of this second experiment as well as the estimations obtained
from the first one.

Concerning Menu|AutoBackApproach, we found an effect of the
technique (F1,11 = 50.2, p < 0.0001), UIM being faster
than STD. We also found a TECH×SIZE interaction (F1,11 =
411, p < 0.0001). While estimated values suggested no sig-
nificant difference for normal sized targets, UIM was in fact
significantly faster than STD for both target sizes (16% speed-
up for the small ones, 8% for the normal sized ones). A
close look at intermediate times shows that participants were
slightly faster in experiment 2 than in experiment 1 on each
sub-task. The performance improvement using UIM might
thus be caused by some learning effect.

Concerning Simple|BackApproach, we found a significant effect
of the technique (F1,11 = 9.02, p = 0.0120) although it is
not very strong compared to most of the other ones we have.
We also found a TECH×SIZE interaction (F1,11 = 40.7, p <
0.0001): UIM was significantly faster than STD for small tar-
gets (17% speed-up), STD being faster for the normal sized
ones (3.7%) but the difference not being significant. This
contrasts with estimations based on the first experiment that
suggested no TECH effect and a significant TECH×SIZE in-
teraction (UIM 6% faster than STD for small targets and STD
16% faster for the normal sized ones). Participants were ac-
tually faster than expected on this task with UIM. A close look
at intermediate times shows that most of the differences be-
tween estimations and actual measurements are concentrated

in the Simple forward sub-task. Considering that we used
Simple|AutoBackApproach to estimate it, it seems plausible that
the automatic pointer warping it triggered slowed down the
participants, which in turn suggests that our additive model
might be too simplistic. Again, a UIM learning effect might
also have occurred.

SUMMARY AND FUTURE WORK
In this paper, we reported on the design, implementation and
evaluation of UIMarks, a system that lets users specify on-
screen targets and associated actions by means of a graphical
marking language and provides a quick way to activate these
marks.

While target-aware pointing techniques are known to be effi-
cient in controlled settings, very few have been implemented
in real systems. Doing so indeed poses two problems: one
needs to identify the targets and also to integrate the tech-
nique with traditional pointing. With UIMarks, we propose
a first solution to these problems for the bubble cursor. As
demonstrated by our two implementations3, our solution is
easily applicable to existing graphical environments without
necessarily requiring the modification of applications. And
as we explained, our solution is not conceptually tied to the
bubble cursor. The first contribution of this work is thus the
proposal of a framework that has the potential to leverage
existing target-aware pointing facilitation techniques.

The second contribution of this work concerns the evaluation
of the proposed solution. The comparative evaluation of tra-
ditional pointing and UIMarks in a lab experiment allowed us
to assess its strengths and weaknesses in an abstract setting.
Our results notably show that for normal-sized targets, the
mode-switching costs outweigh the benefits provided by the
sole bubble cursor. But our results also show that the costs
introduced by UIMarks can largely be compensated when
marks are adequately placed and one takes advantage of their
programability. This is a crucial step towards a better com-
prehension of the strengths and weaknesses of the system in
more complex settings. Future work on the evaluation will
probably include contextual factors such as window manage-
ment configurations or operations, multiple similar targets or
huge distances imposing some clutching.

Like most studies of pointing techniques, ours focused on ef-
ficiency. We did not consider other usability criteria such as
the learnability or memorability of the system, or user satis-
faction. Additional user feedback will be useful for improv-
ing and extending the system in these respects. It should help
us decide, for example, how window-specific marks should
behave in case of scrolling and resizing operations. Should
marks be associated to inner controls rather than windows, or
is the current way of (not) dealing with these operations ac-
ceptable? Accessibility APIs, pixel-based reverse engineer-
ing techniques or hybrid approaches could be used to provide
the structural knowledge required to compare these alterna-
tives [23, 9, 13].

The suitability of our representations and configuration tech-
niques is another question we would like to study in the fu-

3available from http://insitu.lri.fr/uimarks/

http://insitu.lri.fr/uimarks/

ture. Should we go on with a graphical language based on
composable elements, or should we switch to a set of pre-
determined icons? The answer is clearly related to the in-
teraction techniques used to create and configure the marks.
Some might prefer to “program” them, as is possible with
our Metisse implementation, while others might prefer to just
choose them in a predefined set, as on OS X. These questions
will probably lead us to more general ones related to multi-
attribute data specification and visualization.

ACKNOWLEDGEMENTS
We would like to thank Caroline Appert, Michel Beaudouin-
Lafon, Renaud Blanch, Pierre Dragicevic, James Eagan,
Nicolas Gaudron, Wendy Mackay, Emmanuel Pietriga and
the anonymous reviewers for their feedback.

REFERENCES
1. R. Balakrishnan. "Beating" Fitts’ law: virtual enhance-

ments for pointing facilitation. IJHCS, 61(6):857–874,
2004.

2. P. Baudisch, E. Cutrell, M. Czerwinski, D. Robbins,
P. Tandler, B. Bederson, and A. Zierlinger. Drag-and-
pop and drag-and-pick: techniques for accessing re-
mote screen content on touch- and pen-operated sys-
tems. Proc. INTERACT ’03, 57–64. IOS Press, 2003.

3. P. Baudisch, A. Zotov, E. Cutrell, and K. Hinckley.
Starburst: a target expansion algorithm for non-uniform
target distributions. Proc. AVI ’08, 129–137. ACM,
2008.

4. B. Bederson, J. Hollan, A. Druin, J. Stewart, D. Rogers,
and D. Proft. Local tools: An alternative to tool
palettes. Proc. UIST ’96, 169–170. ACM, 1996.

5. R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Se-
mantic pointing: improving target acquisition with
control-display ratio adaptation. Proc. CHI ’04, 519–
526. ACM, 2004.

6. R. Blanch and M. Ortega. Rake cursor: improving
pointing performance with concurrent input channels.
Proc. CHI ’09, 1415–1418. ACM, 2009.

7. O. Chapuis, J.-B. Labrune, and E. Pietriga. Dynaspot:
speed-dependent area cursor. Proc. CHI ’09, 1391–
1400. ACM, 2009.

8. O. Chapuis and N. Roussel. Metisse is not a 3D desk-
top! Proc. UIST’05, 13–22. ACM, 2005.

9. M. Dixon and J. Fogarty. Prefab: implementing ad-
vanced behaviors using pixel-based reverse engineer-
ing of interface structure. Proc. CHI ’10, 1525–1534.
ACM, 2010.

10. P. Fitts. The information capacity of the human motor
system in controlling the amplitude of movement. J.
Exper. Psych., 47:381–391, 1954.

11. T. Grossman and R. Balakrishnan. The bubble cur-
sor: enhancing target acquisition by dynamic resizing
of the cursor’s activation area. Proc. CHI ’05, 281–290.
ACM, 2005.

12. Y. Guiard, R. Blanch, and M. Beaudouin-Lafon. Object
pointing: a complement to bitmap pointing in GUIs.
Proc. GI ’04, 9–16. CHCCS, 2004.

13. A. Hurst, S. Hudson, and J. Mankoff. Automatically
identifying targets users interact with during real world
tasks. Proc. IUI ’10, 11–20. ACM, 2010.

14. A. Hurst, J. Mankoff, A. Dey, and S. Hudson. Dirty
desktops: using a patina of magnetic mouse dust to
make common interactor targets easier to select. Proc.
UIST ’07, 183–186. ACM, 2007.

15. P. Kabbash and W. Buxton. The “prince” technique:
Fitts’ law and selection using area cursors. Proc.
CHI ’95, 273–279. ACM/Addison-Wesley, 1995.

16. M. Kobayashi and T. Igarashi. Ninja cursors: using
multiple cursors to assist target acquisition on large
screens. Proc. CHI ’08, 949–958. ACM, 2008.

17. Y. Li, K. Hinckley, Z. Guan, and J. Landay. Experimen-
tal analysis of mode switching techniques in pen-based
user interfaces. Proc. CHI ’05, 461–470. ACM, 2005.

18. H. Lieberman, F. Paternò, and V. Wulf. End user de-
velopment. Human-Computer Interaction Series, Vol.
9. Springer-Verlag, 2006.

19. I. S. MacKenzie. Fitts’ law as a research and design tool
in human-computer interaction. HCI, 7:91–139, 1992.

20. M. McGuffin and R. Balakrishnan. Fitts’ law and ex-
panding targets: experimental studies and designs for
user interfaces. ACM ToCHI, 12(4):388–422, 2005.

21. T. Nishida and T. Igarashi. Drag-and-guess: drag-and-
drop with prediction. Proc. INTERACT’07, 461–474.
Springer-Verlag, 2007.

22. S. Seow. Information theoretic models of HCI: A com-
parison of the Hick-Hyman law and Fitts’ law. HCI,
20(3):315–352, 2005.

23. W. Stuerzlinger, O. Chapuis, D. Phillips, and N. Rous-
sel. User interface façades: towards fully adaptable user
interfaces. Proc. UIST ’06, 309–318. ACM, 2006.

24. T. Tsandilas and m. c. schraefel. Bubbling menus: a
selective mechanism for accessing hierarchical drop-
down menus. Proc. CHI ’07, 1195–1204. ACM, 2007.

25. J. Wobbrock, J. Fogarty, S. Liu, S. Kimuro, and
S. Harada. The angle mouse: target-agnostic dynamic
gain adjustment based on angular deviation. Proc.
CHI ’09, 1401–1410. ACM, 2009.

26. A. Worden, N. Walker, K. Bharat, and S. Hudson. Mak-
ing computers easier for older adults to use: area cur-
sors and sticky icons. Proc. CHI ’97, 266–271. ACM,
1997.

27. S. Zhai, C. Morimoto, and S. Ihde. Manual and gaze in-
put cascaded (MAGIC) pointing. Proc. CHI ’99, 246–
253. ACM, 1999.

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	DESIGN PROCESS
	CURRENT DESIGN
	Mark attributes
	Actions
	Graphical representation

	INTERACTION DETAILS
	IMPLEMENTATION DETAILS
	EXPERIMENT
	Scenarios and Tasks
	Apparatus
	Distances and Widths
	Design
	Results
	Summary
	Extrapolation based on an additive model

	SUMMARY AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

